二次创作同人专辑的词条
- 欢迎来到THBWiki!如果您是第一次来到这里,请点击右上角注册一个帐户
- 有任何意见、建议、求助、反馈都可以在 讨论板 提出
- THBWiki以专业性和准确性为目标,如果你发现了任何确定的错误或疏漏,可在登录后直接进行改正
infinity
- Infinity(El Dorado) - 2010年8月14日 由 El Dorado 于 Comic Market 78 发布的全长同人专辑,分级为 一般向
- infinity(MOFUYA) - 2014年5月11日 由 MOFUYA 于 博丽神社例大祭11 发布的全长同人专辑,曲目主要风格是 Rock,分级为 一般向
- InFinity(Redial Arts) - 2016年10月9日 由 Redial Arts 于 东方红楼梦12 发布的全长同人专辑,内容以 秘封俱乐部为题材,分级为 一般向
- INFINITY(Inglourious Gossip) - 2014年5月11日 由 Inglourious Gossip 于 博丽神社例大祭11 发布的EP同人专辑,曲目主要风格是 金属,分级为 一般向
- INFINITY - INFINITY ,主要制作 同人音乐 的日本同人社团,当前状态为 休止
- infinity - infinity ,主要制作 同人志 的日本同人社团,主催是 スカーレット(人物),当前状态为 休止
二次创作同人专辑的词条
专辑信息
| 基本信息 | ||
|---|---|---|
角色:二岩猯藏 |
||
| 名称 | infinity | |
| 制作方 | ARMのArmageddon Records | 角色:二岩猯藏 |
| 首发日期 | 2011-12-30 (Comic Market 81) | |
| 类型 | 全长 | |
| 编号 | ARM-0001 | |
| 分级指定 | 一般向 | |
| 碟数 | 1 | |
| 音轨数 | 17 | |
| 总时长 | 46:42 | |
| 风格类型 | 游戏音乐,古典 | |
| 特定选材 | 东方神灵庙 | |
| 售价 | 会场售价:800日元 通贩售价:840日元 | |
| 官网页面 | http://www.iosysos.com/arm-0001/ (已经失效)(缓存页面1, 缓存页面2) http://armageddon-records.com/cd/infinity/ (已经失效)(缓存页面1, 缓存页面2) | |
| 备注 | 使用圣剑传说2音乐风格 | |
| 通贩信息 | ||
|---|---|---|
| 官方通贩 | Apple Music,Google Play Music | |
Staff
Arrangement
| ARM | ARMのArmageddon Records | Tr.1-17 |
曲目列表
| 01 | Fear of Lotus Land | 01:36 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 02 | Folk Tale | 00:50 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 03 | Stranger Here | 01:30 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 04 | Animal Trail | 02:33 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 05 | Pulverize | 03:44 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 06 | Serendipity | 03:04 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 07 | Architectural Ensemble | 03:28 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 08 | Graveyard Shift | 03:19 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 09 | Burial Paradise | 03:22 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 10 | Numinous | 03:01 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 11 | Garuda Temple | 03:46 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 12 | Hopper | 01:11 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 13 | Infinite Blue | 04:29 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 14 | Apocalypse | 01:25 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 15 | Streak | 02:49 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 16 | Reanimated Trickster | 03:13 | |
| 编曲 | ARM | ||
| 原曲 | |||
| 17 | Toodle-loo | 03:22 | |
| 编曲 | ARM | ||
| 原曲 | |||
评论
infinity をお手に取って頂きありがとうございます。
念願の個人サークル
「ARM の Armageddon Records」第一弾 CD です。
自分は打ち込みが大好きな人間なので、
生き方が塗り変わるほどの強い影響を受けた聖○伝説2の要素を素直に出してみようと、
意図的にサントラ仕様にしてみました。
ファンタジックな大自然の中、マミゾウたちが様々な冒険をしながら成長して行き、
世界のために大きな働きをする、そんな物語をご一緒に想像できたら嬉しいです。
もしくは作業のお供に。
アレンジですが、「あの曲」に猛烈に似せたもの、原曲の雰囲気をストレートに出したもの、
両者を ARM的に再解釈したもの、などなど、色々と混ぜこぜになっています。
どのアレンジにも原曲がしっかりと入っていますので、折角の音符系のインストですし、
是非とも聞き比べて楽しんで下さい。
ARM の Armageddon Records は今後、
東方も、東方じゃないものも、歌ものも、インストものも、クラブものも、
とにかくわたくし ARM が表現したいことを自由にやる場として活動して行きます。
恐らく、作品毎に全く違うコンセプト、全く違う音楽がリリースされると思います。
何かご要望やご意見がありましたら、
Twitter(ARM_IOSYS) などにお寄せ下さい。
オリジナルサウンドトラック的な作りを
強く意識したインストアレンジです。
ほとんどの曲がループ、フェードアウト致します。
また、スーパーファミコンの質感に似せるため、
あえて音を劣化させるなどの処理を行っています。
これらのお約束を楽しめる方のみ、ご購入下さい。
マミゾウLOVE!! マミゾウを愛す!!
A long time ago...
Miko Toyosatomimi who acquired eternal youth non-death according to
Taoism had influence. She ruined her health by overstudy of Taoism.
Then she devised the secret art revitalizeing her after dying once using a
mausoleum. However, her plot has been perceived, and was sealed by
building Myoren Temple on the mausoleum. Thousand years passed over it.
The mausoleum was moved to Lotus Land and the strain increased...
Infinity is a concept in many fields, most predominantly mathematics and physics, that refers to a quantity without bound or end. People have developed
various ideas throughout history about the nature of infinity. The word comes from the Latin infinitas or "unboundedness".
In mathematics, "infinity" is often treated as if it were a number (i.e., it counts or measures things: "an infinite number of terms") but it is not the same sort
of number as the real numbers. In number systems incorporating infinitesimals, the reciprocal of an infinitesimal is an infinite number, i.e. a number
greater than any real number. Georg Cantor formalized many ideas related to infinity and infinite sets during the late 19th and early 20th centuries. In the
theory he developed, there are infinite sets of different sizes (called cardinalities). For example, the set of integers is countably infinite, while the set of real
numbers is uncountably infinite.
History
Ancient cultures had various ideas about the nature of infinity. The ancient Indians and Greeks, unable to codify infinity in terms of a formalized
mathematical system approached infinity as a philosophical concept.
Early Greek
The earliest attestable accounts of mathematical infinity come from Zeno of Elea (ca. 490 BCE? ca. 430 BCE?), a pre-Socratic Greek philosopher of
southern Italy and member of the Eleatic School founded by Parmenides. Aristotle called him the inv inventor of the dialectic. He is best known for his
paradoxes, which Bertrand Russell has described as "immeasurably subtle and profound".
In accordance with the traditional view of Aristotle, the Hellenistic Greeks generally preferred to distinguish the potential infinity from the actual infinity:
for example, instead of saying that there are an infinity of primes, Euclid prefers instead to say that there are more prime numbers than contained in any
given collection of prime numbers (Elements, Book IX, Proposition 20).
However, recent readings of the Archimedes Palimpsest have hinted that at least Archimedes had an intuition about actual infinite quantities.
Early Indian
The Isha Upanishad of the Yajurveda (c. 4th to 3rd century BCE?) states that "if you remove a part from infinity or add a part to infinity, still what remains
is infinity"."
The Indian mathematical text Surya Prajnapti (c. 400 BCE) classifies all numbers into three sets: enumerable, innumerable, and infinite. Each of these was
further subdivided into three orders:
Enumerable: lowest, intermediate, and highest
Innumerable: nearly innumerable, truly innumerable, and innumerably innumerable
Infinite: nearly infinite, truly infinite, infinitely infinite
In the Indian work on the theory of sets, two basic types of infinite numbers are distinguished. On both physical and ontological grounds, a distinction was
made between asa?khy?ta ("countless, innumerable") and ananta ("endless, unlimited"), between rigidly bounded and loosely bounded infinities.
Infinity (Dec. 11, 2011, 12:30 JPN). In Wikipedia: The Free Encyclopedia.
Retrieved from http://en.wikipedia.org/wiki/infinity